- \(X\) is a random variable with PDF \(f\)
- \(Y\) is a random variable with PDF \(g\)
\[{\color{blue}\text{E}[X] = \displaystyle\int_{-\infty}^{\infty} \! x \cdot f(x) \, dx}, \quad {\color{red}\text{E}[Y] = \displaystyle\int_{-\infty}^{\infty} \! y \cdot g(y) \, dy}\]
\[{\color{blue}\text{Var}(X) = \text{E}[X^{2}] - \left( \text{E}[X] \right)^{2}}, \quad {\color{red}\text{Var}(Y) = \text{E}[Y^{2}] - \left( \text{E}[Y] \right)^{2}}\]
Let \(a\), \(b\), and \(c\) be constants.
Linear Operators
We say that \(L\) is a linear operator if
\[\begin{array}{rcl}
L(a{\color{blue}f(x)}) & = & aL({\color{blue}f(x)}) \\
L({\color{blue}f(x)} + {\color{red}g(x)}) & = & L({\color{blue}f(x)}) + L({\color{red}g(x)}) \\
\end{array}\]
Loosely translated, \(L\) is a linear operator if
- we can factor out a scalar multiple
- we can split the operator across a sum or difference
Calculus Review
- Show that the derivative operator is a linear operator.
- Show that the integral operator is a linear operator.
Proof
\[\begin{array}{rcl}
\displaystyle\frac{d}{dx}(a{\color{blue}f(x)} + b{\color{red}g(x)}) & = & \displaystyle\frac{d}{dx} a{\color{blue}f(x)} + \displaystyle\frac{d}{dx} b{\color{red}g(x)} \\
~ & = & a\displaystyle\frac{d}{dx} {\color{blue}f(x)} + b\displaystyle\frac{d}{dx} {\color{red}g(x)} \\
\end{array}\]
\[\displaystyle\frac{d}{dx}(a{\color{blue}f(x)} + b{\color{red}g(x)}) = a\displaystyle\frac{d}{dx} {\color{blue}f(x)} + b\displaystyle\frac{d}{dx} {\color{red}g(x)},\]
so \(\displaystyle\frac{d}{dx}\) is a linear operator.
Proof
\[\begin{array}{rcl}
\displaystyle\int \! (a{\color{blue}f(x)} + b{\color{red}g(x)}) \, dx & = & \displaystyle\int \! a{\color{blue}f(x)} \, dx + \displaystyle\int \! b{\color{red}g(x)} \, dx \\
~ & = & a\displaystyle\int \! {\color{blue}f(x)} \, dx + b\displaystyle\int \! {\color{red}g(x)} \, dx \\
\end{array}\]
\[\displaystyle\int \! (a{\color{blue}f(x)} + b{\color{red}g(x)}) \, dx = a\displaystyle\int \! {\color{blue}f(x)} \, dx + b\displaystyle\int \! {\color{red}g(x)} \, dx,\]
so \(\displaystyle\int\) is a linear operator.
Expected Value
Is the expectation operator \(\text{E}\) a linear operator?
Proof
\[\text{E}[aX] = \displaystyle\int_{-\infty}^{\infty} \! ax \cdot f(x) \, dx = a{\color{blue}\displaystyle\int_{-\infty}^{\infty} \! x \cdot f(x) \, dx} = a{\color{blue}\text{E}[X]}\]
We have shown that we can factor out a scalar multiple across the expectation operator.
Proof
\[\begin{array}{rcl}
\text{E}[X + c] & = & \displaystyle\int_{-\infty}^{\infty} \! (x + c) \cdot f(x) \, dx \\
~ & = & {\color{blue}\displaystyle\int_{-\infty}^{\infty} \! x \cdot f(x) \, dx} + \displaystyle\int_{-\infty}^{\infty} \! c \cdot f(x) \, dx\\
~ & = & {\color{blue}\displaystyle\int_{-\infty}^{\infty} \! x \cdot f(x) \, dx} + c\displaystyle\int_{-\infty}^{\infty} \! f(x) \, dx \\
~ & = & {\color{blue}\text{E}[X]} + c \\
\end{array}\]
We have shown that a horizontal shift of \(c\) units in the data also affects the expected value by \(c\) units
Proof
\[\begin{array}{rcl}
{\color{purple}\text{E}[X + Y]} & = & {\color{blue}\displaystyle\int_{-\infty}^{\infty}}{\color{red}\displaystyle\int_{-\infty}^{\infty}} \! {\color{purple}(x + y) \cdot f(x,y)} \, {\color{red}dy} \, {\color{blue}dx} \\
~ & = & {\color{blue}\displaystyle\int_{-\infty}^{\infty}}{\color{red}\displaystyle\int_{-\infty}^{\infty}} \! {\color{blue}x} \cdot {\color{purple}f(x,y)} \, {\color{red}dy} \, {\color{blue}dx} + {\color{red}\displaystyle\int_{-\infty}^{\infty}}{\color{blue}\displaystyle\int_{-\infty}^{\infty}} \! {\color{red}y} \cdot {\color{purple}f(x,y)} \, {\color{blue}dx} \, {\color{red}dy} \\
~ & = & {\color{blue}\displaystyle\int_{-\infty}^{\infty}\! x \cdot f_{X}(x) \, dx} + {\color{red}\displaystyle\int_{-\infty}^{\infty} \! y \cdot f_{Y}(y) \, dy} \\
~ & = & {\color{blue}\text{E}[X]} + {\color{red}\text{E}[Y]} \\
\end{array}\]
We have shown that the expected value of a sum \ is the sum of the expected values.
Combining the above results, since
\[\text{E}[aX + bY] = a\text{E}[X] + b\text{E}[Y]\]
we have shown that the expectation operator \(\text{E}\) is a linear operator.
Also,
\[\text{E}[aX + bY + c] = a\text{E}[X] + b\text{E}[Y] + c\]
Variance
Is the variance \(\text{Var}(X)\) function a linear operator?
Counterpoint:
Recall the ``practical formula for variance’’
\[\text{Var}(X) = \text{E}[X^{2}] - \left(\text{E}[X]\right)^{2}\]
and tracking the scaling factor proceeds as follows
\[\begin{array}{rcl}
\text{Var}(aX) & = & \text{E}[(aX)^{2}] - \left(\text{E}[aX]\right)^{2} \\
~ & = & \displaystyle\int_{-\infty}^{\infty}\! (ax)^{2} \cdot f(x) \, dx - \left(a\text{E}[X]\right)^{2} \\
~ & = & \displaystyle\int_{-\infty}^{\infty}\! a^{2}x^{2} \cdot f(x) \, dx - a^{2}\left(\text{E}[X]\right)^{2} \\
~ & = & a^{2} \left[ \displaystyle\int_{-\infty}^{\infty}\! x^{2} \cdot f(x) \, dx - \left(\text{E}[X]\right)^{2} \right] \\
~ & = & a^{2} \left( \text{E}[X^{2}] - \left(\text{E}[X]\right)^{2} \right) \\
~ & = & a^{2} \text{Var}(X) \\
\end{array}\]
When factoring out a scalar from the variance function, the factor is squared.
Furthermore, since \(\text{Var}(aX) \neq a\text{Var}(X)\), we have shown that the variance function is not a linear operator.
Counterpoint:
Recall the ``practical formula for variance’’
\[\begin{array}{rcl}
\text{Var}(X + c) & = & \text{E}[(X + c)^{2}] - \left(\text{E}[X + c]\right)^{2} \\
~ & = & \text{E}[X^{2} + 2cX + c^{2}] - \left(\text{E}[X] + c \right)^{2} \\
~ & = & \text{E}[X^{2}] + \text{E}[2cX] + \text{E}[c^{2}] - \left(\text{E}[X]\right)^{2} - 2c\text{E}[X] - c^{2} \\
~ & = & \text{E}[X^{2}] + 2c\text{E}[X] + c^{2} - \left(\text{E}[X]\right)^{2} - 2c\text{E}[X] - c^{2} \\
~ & = & \text{E}[X^{2}] - \left(\text{E}[X]\right)^{2} \\
~ & = & \text{Var}(X) \\
\end{array}\]
We have shown that \(\text{Var}(X + c) = \text{Var}(X)\). That is, variance is not affected by a horizontal shift (phase shift)!
Furthermore, since \(\text{Var}(X + c) \neq \text{Var}(X) + c\), we have shown that the variance function is not a linear operator.
Counterpoint:
\[\begin{array}{rcl}
\text{Var}(X + Y) & = & \text{E}[(X + Y)^{2}] - \left(\text{E}[X + Y]\right)^{2} \\
~ & = & \text{E}[X^{2} + 2XY + Y^{2}] - \left(\text{E}[X] + \text{E}[Y]\right)^{2} \\
~ & = & \text{E}[X^{2}] + \text{E}[2XY] + \text{E}[Y^{2}] - \left(\text{E}[X]\right)^{2}+ 2\text{E}[X]\text{E}[Y] + \left(\text{E}[Y]\right)^{2} \\
~ & = & \text{E}[X^{2}] - \left(\text{E}[X]\right)^{2} + \text{E}[Y^{2}] - \left(\text{E}[Y]\right)^{2} + 2\text{E}[XY] - 2\text{E}[X]\text{E}[Y] \\
~ & = & {\color{blue}\text{Var}(X)} + {\color{red}\text{Var}(Y)} + 2\left( {\color{purple}\text{E}[XY] - \text{E}[X]\text{E}[Y] } \right) \\
\end{array}\]
We have shown that \(\text{Var}(X + Y) \neq \text{Var}(X) + \text{Var}(Y)\). That is, the variance of the sum is not the sum of the variances (unless …?)
Furthermore, since \(\text{Var}(X + Y) \neq \text{Var}(X) + \text{Var}(Y)\), we have shown that the variance function is not a linear operator.
We have shown that the variance function is not a linear operator.
Next time: working with
\[{\color{purple}\text{E}[XY] - \text{E}[X]\text{E}[Y]}\]
which is called the covariance!
Looking Ahead
due Fri., Mar. 10:
- WHW7
- LHW6
- Internet Connection (survey)
Exam 2 will be on Mon., Apr. 10
no lecture on Mar. 10, Mar. 24